Unsupervised data classification using pairwise Markov chains with automatic copulas selection

نویسندگان

  • Stéphane Derrode
  • Wojciech Pieczynski
چکیده

The Pairwise Markov Chain (PMC) model assumes the couple of observations and states processes to be aMarkov chain. To extend themodeling capability of class-conditional densities involved in the PMC model, copulas are introduced and the influence of their shape on classification error rates is studied. In particular, systematic experiments show that the use of wrong copulas can degrade significantly classification performances. Then an algorithm is presented to identify automatically the right copulas from a finite set of admissible copulas, by extending the general ‘‘Iterative Conditional Estimation’’ (ICE) parameters estimationmethod to the context considered. The unsupervised segmentation of a radar image illustrates the nice behavior of the algorithm. © 2013 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copulas selection in pairwise Markov chain

The Hidden Markov Chain (HMC) model considers that the process of unobservable states is a Markov chain. The Pairwise Markov Chain (PMC) model however considers the couple of processes of observations and states as a Markov chain. It has been shown that the PMC model is strictly more general than the HMC one, but retains the ease of processings that made the success of HMC in a number of applic...

متن کامل

Unsupervised Signal Restoration Using Copulas and Pairwise Markov Chains

This work deals with the statistical restoration of hidden discrete signals. The problem we deal with is how to take into account, in recent pairwise and triplet Markov chain context, complex noises that can be non-Gaussian, correlated, and of class-varying nature. We propose to solve this modeling problem using Copulas. The interest of the new modeling is validated by experiments performed in ...

متن کامل

Unsupervised signal restoration using hidden Markov chains with copulas

This paper deals with the statistical restoration of hidden discrete signals, extending the classical methodology based on hidden Markov chains. The aim is to take into account the hidden signal and complex relationships between the noises which can be from different parametric models, non-independent, and of class-varying nature. We discuss some possibilities of managing it using copulas. Furt...

متن کامل

Unsupervised classification using hidden Markov chain with unknown noise copulas and margins

We consider the problem of unsupervised classification of hidden Markov models (HMC) with dependent noise. Time is discrete, the hidden process takes its values in a finite set of classes, while the observed process is continuous. We adopt an extended HMC model in which the rich possibilities of different kinds of dependence in the noise are modelled via copulas. A general model identification ...

متن کامل

Copulas for Markovian Dependence

Copulas have been popular to model dependence for multivariate distributions, but have not been used much in modelling temporal dependence of univariate time series. This paper shows some difficulties with using copulas even for Markov processes: some tractable copulas such as mixtures between copulas of complete coand countermonotonicity and independence (Fréchet copulas) are shown to imply qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2013